ACM Transactions on

Social Computing (TSC)

Latest Articles

Uncertainty-based False Information Propagation in Social Networks

Many network scientists have investigated the problem of mitigating or removing false information propagated in social networks. False information... (more)

Beyond Monetary Incentives: Experiments in Paid Microtask Contests

In this article, we aim to gain a better understanding into how paid microtask crowdsourcing could leverage its appeal and scaling power by using contests to boost crowd performance and engagement. We introduce our microtask-based annotation platform Wordsmith, which features incentives such as points, leaderboards, and badges on top of financial... (more)

Danmaku: A New Paradigm of Social Interaction via Online Videos

Danmaku is a new commentary design for online videos. Unlike traditional forums where comments are displayed asynchronously below a video screen in order of when the comments are posted, danmaku comments are overlaid on the screen and displayed along with the video. This new design creates a pseudo-synchronous effect by displaying asynchronous... (more)


About TSC

ACM Transactions on Social Computing (TSC) seeks to publish work that covers the full spectrum of social computing including theoretical, empirical, systems, and design research contributions. READ MORE

Special Issue on Negotiating Truth and Trust in Socio-Technical Systems (submissions closed)

This special issue will explore interdisciplinary perspectives on negotiating truth and trust in socio-technical systems. Rather than seeking to define or promote one "truth," this issue focuses on how users identify and wrestle with competing notions of truth and trust in highly contested online information environments, full of risk and reward, and how designs of infrastructure and policy help or hinder these interactions.  

Special Issue on Emoji Understanding and Applications in Social Media (submissions closed)

This special issue seeks original research manuscripts dealing with computer and social science research efforts on understanding social, cultural, communicative, and linguistic roles of emoji and on building novel computational methods to understand, interpret, and exploit them. READ MORE

Forthcoming Articles
Measuring Motivations of Crowdworkers: The Multidimensional Crowdworker Motivation Scale

Crowd employment is a new form of short-term and flexible employment which has emerged during the past decade. In order to understand this new form of employment, it is crucial to illuminate the underlying motivations of the workforce involved in it. This paper introduces the Multidimensional Crowdworker Motivation Scale (MCMS), a scale for measuring the motivation of crowdworkers on micro-task platforms. The MCMS is theoretically grounded in self-determination theory and tailored specifically to the context of paid crowdsourced micro-labor. The scale measures the motivation of crowdworkers along six motivational dimensions, ranging from amotivation to intrinsic motivation. We validated the MCMS on data collected in ten countries and three income groups. Factor analyses demonstrated that the MCMS's six dimensions showed good model fit, validity, and reliability. Furthermore, our measurement invariance tests showed that motivations measured with the MCMS are comparable across countries and income groups, and we present a first cross-country comparison of crowdworker motivations. This work constitutes an important first step towards understanding the motivations of the international crowd workforce.

A Practical Guide for the Effective Evaluation of Twitter User Geolocation

Geolocating Twitter users---the task of identifying their home locations---serves a wide range of community and business applications such as managing natural crises, journalism, and public health. Many approaches have been proposed for automatically geolocating users based on their tweets; at the same time, various evaluation metrics have been proposed to measure the effectiveness of these approaches, making it challenging to understand which of these metrics is the most suitable for this task. In this paper, we propose a guide for a standardized evaluation of Twitter user geolocation by analyzing fifteen models and two baselines in a controlled experimental setting. Models are evaluated using ten metrics over four geographic granularities. We use rank correlations to assess the effectiveness of these metrics. Our results demonstrate that the choice of effectiveness metric can have a substantial impact on the conclusions drawn from a geolocation system experiment, potentially leading experimenters to contradictory results about relative effectiveness. We show that for general evaluations, a range of performance metrics should be reported, to ensure that a complete picture of system effectiveness is conveyed. Given the global geographic coverage of this task, we specifically recommend evaluation at micro versus macro levels to measure the impact of the bias in distribution over locations. Although a lot of complex geolocation algorithms have been applied in recent years, a majority class baseline is still competitive at coarse geographic granularity. We propose a suite of statistical analysis tests, based on the employed metric, to ensure that the results are not coincidental.

All ACM Journals | See Full Journal Index